2020 Consumer Confidence Report (Annual Drinking Water Quality Report for 1 January 31 December 2020) (St Jacob – IL1190950)

This Report is intended to provide you with important information about your drinking water and the efforts made by the water system to provide safe drinking water. Sources of drinking water used by the Village of St Jacob is Well and Purchased Surface Water

Sources of Drinking Water:

- The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminates that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming
- Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems.
- Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.

Summary:

- Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More info about contaminants and potential health effects can be obtained by calling the EPAs Safe Drinking Water Hotline at (800) 426-4791
- In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health. Some people may be more vulnerable to contaminants in drinking water than the general population
- Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (800-426-4791).
- If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead

For more information about this report contact: Curtis Kinnick at 618-334-3285

Questions or Concerns: Please Attend a council meeting held at 6:30 on the 1st and 3rd Wednesday or each month in the Village Hall.

*Este informe contiene información muy importante sobre el agua que usted bebe. Tradúzcalo ó hable con alguien que lo entienda bien.

Source Water Information

Source Water Name		Type of Water	Report Statu	s Location
CC 03-MASTER METER HIGHLAND-	FF IL1190550 TP02	SW		3 MI E/ STJ-N SIDE 40
CC 04-MASTER METER-BOND MADISON	FF IL0050020 TP01	SW		FROM BOND-MADISON WATER CO
CC 05-MASTER METER-TRI-TWSP	FF IL1190080 TP01	SW		FROM TRI-TOWNSHIP WD
WELL 5 (60200)	.7 MI N/RT 40 ON ST JAC-	GW		

Source Water Assessment

We want our valued customers to be informed about their water quality. If you would like to learn more, please feel welcome to attend any of our regularly scheduled meetings. The source water assessment for our supply has been completed by the Illinois EPA. If you would like a copy of this information, please stop by City Hall or call our water operator, Curtis Kinnick, at <u>618-334-3285</u>. To view a summary version of the completed Source Water Assessments, including: Importance of Source Water; Susceptibility to Contamination; and documentation/recommendation of Source Water Protection Efforts, you may access the Illinois EPA website at http://www.epa.state.il.us/cgi-bin/wp/swap-fact-sheets.pl.

Source of Water: ST JACOB Based on information obtained in a Well Site Survey, published in 1990 by the Illinois EPA, a water treatment plant with a surface impoundment located 500 feet from Well #4 and 1,850 feet from Well #5. Furthermore, information provided by the Leaking Underground Storage Tank Section of Illinois EPA indicated an additional site with an on-going remediation. However, the site has not been field verified by the Groundwater Section staff. The Illinois EPA has determined that the St. Jacob Community Water Supply's source water has is not susceptible to contamination. This determination is based on a number of criteria including: monitoring conducted at the wells; monitoring conducted at the entry point to the distribution system; and the available hydrogeologic data on the wells. Furthermore, in anticipation of the U.S. EPA's proposed Ground Water Rule, the Illinois EPA has determined that the St. Jacob Community Water Supply is not vulnerable to viral contamination. This determination is based upon the fact that the following criteria were evaluated during the Vulnerability Waiver Process: the community's wells are properly constructed with sound integrity and proper site conditions; a hydrogeologic barrier exists which prevents pathogen movement; all potential routes and sanitary defects have been mitigated such that the source water is adequately protected; monitoring data did not indicate a history of disease outbreak; and the sanitary survey of the water supply did not indicate a viral contamination threat. Because the community's wells are constructed in a confined aquifer, which should prevent the movement of pathogens into the wells, well hydraulics were not considered to be a significant factor in the susceptibility determination. Hence, well hydraulics were not evaluated for this groundwater supply. Source of Water: HIGHLAND Illinois EPA considers all surface water sources of community water supply to be susceptible to potential pollution problems; hence, the reason for mandatory treatment for all surface water supplies in Illinois. Mandatory treatment includes coagulation, sedimentation, filtration, and disinfection Source of Water: IL AMERICAN-GRANITE CITY: Illinois EPA considers all surface water sources of community water supply to be susceptible to potential pollution problems, hence, the reason for mandatory treatment for all surface water supplies in Illinois. Mandatory treatment includes coagulation, sedimentation, filtration, and disinfection. Within the Illinois portion of the Mississippi River Watershed, which is illustrated in Figure 3, many commodities, including manufactured goods, petrochemicals, and pesticides are transported along the river system. The production, storage, and transportation of these commodities are a major concern, especially when occurring near surface water intakes. In addition, agricultural runoff within the Illinois portion of the Mississippi River Basin contributes to the susceptibility of the IAWC-Granite City intakes. With high flow rates and long distances of travel on the Mississippi River, critical areas can be extensive. The critical area for the IAWC-Granite City intake was determined using data from a joint U. S. Environmental Protection Agency/U. S. Geological Survey project. This project used a computer modeling program (SPARROW) to determine travel times on major rivers in the United States. Accidental spills of hazardous materials into navigable waterways are a major concern because of their frequency in the United States in recent years. Illinois has access to 1.116 miles of inland waterway that can handle commercial barge traffic. These include the Upper Mississippi River, Illinois River Waterway, and the Ohio River. Along these waterways are numerous facilities that load and unload hazardous materials. Analysis of reported spills indicate that between 1974 and 1989, 794 accidental spills of hazardous materials occurred along Illinois waterways. Approximately 92% of these spills occurred along the Mississippi and/or the Illinois River. Figure 2 shows the critical area of concern (Zone 1) for the IAWC-Granite City surface water intake. Spills occurring in this critical area will travel to the intake in five hours or less, making contingency planning and spill reporting a major concern in this watershed. Information concerning spill response planning on the Mississippi River may be found at the U.S. EPA website www.epa.gov/region5/oil, and additional data can also be downloaded at the U. S. Geological Survey's FTP site ftp://ftp.umesc.er.usgs.gov/pub/gis data/oil spill.Source of Water: IL AMERICAN-EAST ST LOUIS Illinois EPA considers all surface water sources of community water supply to be susceptible to potential pollution problems, hence, the reason for mandatory treatment for all surface water supplies in Illinois. Mandatory treatment includes coagulation, sedimentation, filtration, and disinfection. Within the Illinois portion of the Mississippi River Watershed, which is illustrated in Figure 3, many commodities, including manufactured goods, petrochemicals, and pesticides are transported along the river system. The production, storage, and transportation of these commodities are a major concern, especially when occurring near surface water intakes. In addition, agricultural runoff within the Illinois portion of the Mississippi River Basin contributes to the susceptibility of the IAWC-East St. Louis intakes. With high flow rates and long distances of travel on the Mississippi River, critical areas can be extensive. The critical area for the IAWC-East St. Louis intake was determined using data from a joint U.S. Environmental Protection Agency/U. S. Geological Survey project. This project used a computer modeling program (SPARROW) to determine travel times on major rivers in the United States. Accidental spills of hazardous materials into navigable waterways are a major concern because of their frequency in the United States in recent years. Illinois has access to 1.116 miles of inland waterway that can handle commercial barge traffic. These include the Upper Mississippi River, Illinois River Waterway, and the Ohio River. Along these waterways are numerous facilities that load and unload hazardous materials. Analysis of reported spills indicate that between 1974 and 1989, 794 accidental spills of hazardous materials occurred along Illinois waterways. Approximately 92% of these spills occurred along the Mississippi and/or the Illinois River. Figure 2 shows the critical area of concern (Zone 1) for the IAWC-East St. Louis surface water intake. Spills occurring in this critical area will travel to the intake in five hours or less, making contingency planning and spill reporting a major concern in this watershed. Information concerning spill response planning on the Mississippi River may be found at the U. S. EPA website www.epa.gov/region5/oil, and additional data can also be downloaded at the U. S. Geological Survey's FTP site ftp://ftp.umesc.er.usgs.gov/pub/gis_data/oil_spill.Source of Water: S L M WATER COMMISSION Illinois EPA considers all surface water sources of community water supply to be susceptible to potential pollution problems, hence, the reason for mandatory treatment for all surface water supplies in Illinois. Mandatory treatment includes coagulation, sedimentation, filtration, and disinfection. Primary sources of pollution in Illinois lakes can include agricultural runoff, land disposal (septic systems) and shoreline erosion.

Coliform Bacteria

Maximum Contamination Level Goal	Total Coliform Maximum Contaminant Level	Highest Number of Positives	Fecal Coliform or E- Coli Maximum Contaminant Level	Total Number of Positive E-Coli or Fecal Coliforms	Violation	Likely Source of Contamination
0	1 Positive Monthly Sample	1	0	0	N	Naturally Occurring in Environment

Lead and Copper

Definitions: Action Level Goal (ALG): The level of a contaminant in drinking water below which there is no known or expected risk to health. ALGs allow for a margin of safety. Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Lead and Copper	Date Sampled	MCLG	Action Level (AL)	90th Percentile	# Sites Over AL	Units	Violation	Likely Source of Contamination
Copper	2019	1.3	1.3	1.29	1	ppm		Erosion of natural deposits; Leaching from wood preservatives; Corrosion of household plumbing systems.

2020 Regulated Contamination Detected

Disinfectant By-Products

Disinfectants and disinfection	Collection Date	Highest Level	Range of Levels	MCLG	MCL	Units	Violation	Likely Source of Contamination
by-products		Detected	Detected					
Chloramines	12/31/2020	1.6	1 - 2	MRDLG = 4	MRDL = 4	ppm	No	Water additive used to control microbes
Haloacetic Acids (HAA5)	2020	43	19.3 - 73	NA	60	ppb	No	By-product of drinking water disinfection
Total Trihalomethanes (TTHM?	2020	80	16 – 91.7	NA	80	ppb	No	By-product of drinking water disinfection

Inorganic Contaminates

Inorganic	Collection	Highest Level	Range of Level	MCLG	MCL	Units	Violation	Likely Source of Contamination
Contaminates	Date	Detected	Detected					
Barium	5/16/18	0.186	0.186 - 0.186	2	2	ppm	No	Discharge of drilling wastes; Discharge from
								metal refineries; Erosion of natural deposits.
Fluoride	5/16/18	0.93	0.93 - 0.93	4	4.0	ppm	No	Erosion of natural deposits; Water additive
								which promotes strong teeth; Discharge from
								fertilizer and aluminum factories
Sodium	2018	399	339-339			ppm	No	Runoff from fertilizers use; leaching from septic
								tanks, sewer; erosion of natural deposits

Radioactive Contaminates

Radiological	Collection	Highest Level	Range of	MCLG	MCL	Units	Violation `	Likely Source of Contamination
Contamination	Date	Detected	Levels					
			Detected					
Combined Radium	7/12/17	2.27	2.27 - 2.27	0	5	pCi/L	No	Erosion of natural deposits
Gross alpha	7/12/17	6.9	6.9 - 6.9	0	15	pCi/L	No	Erosion of natural deposits
excluding radon								
and uranium								

Water Quality Test Results Definitions

Avg	Regulatory compliance with some MCLs are based on running annual average of monthly samples.
Level 1 Assessment	A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform
	bacteria have been found in our water system
Level 2 Assessment	A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an
	E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions
Maximum Contaminant Level or MCL	The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best
	available treatment technology.
Maximum Contaminant Level Goal or	The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin
MCLG	of safety
Maximum residual disinfectant level goal	The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the
or MRDLG	benefits of the use of disinfectants to control microbial contaminants.
Maximum residual disinfectant level or	The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is
MRDL:	necessary for control of microbial contaminants.
na:	Not Applicable
mrem:	millirems per year (a measure of radiation absorbed by the body)
ppb:	micrograms per liter or parts per billion - or one ounce in 7,350,000 gallons of water.
ppm:	milligrams per liter or parts per million - or one ounce in 7,350 gallons of water.
Treatment Technique or TT:	A required process intended to reduce the level of a contaminant in drinking water.

Illinois American Water – Granite City Water Quality Results

Regulated Substances

		Compliance	MCLG	MCL	Highest	Range	Likely Source of Contamination
Substance	Year	Achieved			Compliance	Detected	
	Sampled				Result		
Arsenic (ppb)	2020	Yes	0	10	2	2.0 - 2.0	Erosion from naturally occurring deposits, runoff from orchards,
							runoff from glass and electronic production waste
Fluoride	2020	Yes	4.0	4.0	0.7	0.68 - 0.68	Erosion of natural deposits; Water additive which promotes strong
							teeth; Discharge from fertilizer and aluminum factories
Nitrate	2020	Yes	10	10	4	3.77 - 3.77	Runoff from fertilizers use; leaching from septic tanks, sewer; erosion
							of natural deposits

Other Substance of Interest

Substance	Year Sampled	Compliance Achieved	MCLG	MCL	Highest Compliance Result	Range Detected	Likely Source of Contamination
Sodium	2020	NA	NA`	NA	25	25.2 - 25.2	Erosion from naturally occurring deposits. Used in water softeners regeneration.

Turbidity

Turbidity	Limit (treatment technique)	Level Detected	Compliance Achieved	Likely Source of Contamination
Lowest Monthly % meeting limits	0.3 NTU	100%	Yes	Soil Runoff
Highest Single Measurement	1 NTU	.17 NTU	Yes	Soil Runoff

- Turbidity is a measure of the cloudiness of the water caused by suspended particles. We monitor it because it is a good indicator of the effectiveness of our filtration system, water quality, and disinfectants. The treatment technique requires that at least 95% of routine samples are less than or equal to 0.3 NTU, and no sample exceeds 1 NTU. We are reporting the percentage of all readings meeting the standard of 0.3 NTU, plus the single highest reading for the year

Unregulated Contamination Monitoring Rule (UCMR4)

Parameter	Units	Year	Average Result	Range	Typical Source
				Detected	
Total Haloacetic Acid	ppb	2019	24	16 – 35	By-product of drinking water disinfection.
Total Haloacetic Acid - Br	ppb	2019	3.2	1.4 - 7.1	By-product of drinking water disinfection.
Total Haloacetic Acid –	ppb	2019	27	18 - 42	By-product of drinking water disinfection.
UCMR4					
Manganese	ppb	2019	10	4.7 - 16	Naturally occurring elemental metal largely used in aluminum
					alloy production. Essential dietary element

Illinois American Water- East St. Louis Water Quality Results

Regulated Substances

Substance (with Units)	Year Sampled	Compliance Achieved	MCLG	MCL	Highest Compliance Result	Range Detected	Typical Source
Fluoride	2020	Yes	4.0	4.0	0.7	0.67 – 0.67	Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories
Nitrate	2020	Yes	10	10	4.0	1.62 - 3.96	Runoff from fertilizers use; leaching from septic tanks, sewer; erosion of natural deposits
Arsenic	2020	Yes	0	10	2.0	0-2.0	Erosion of Natural Deposits, runoff from orchards. Runoff from glass and electronic production waste.
Combined Radium 226/22 (pCi/L)	2020	Yes	0	5	1.29	0.977 – 1.29	Erosion of Natural Deposits
Gross Alpha Excluding Radon and Uranium (pCi/L)	2020	Yes	0	15	2.84	0.24 – 2.84	Erosion of Natural Deposits
Atrazine (ppb)	2020	Yes	3	3	1.1	0 - 1.1	Erosion of Natural Deposits

1 Fluoride is added to the water supply to help promote strong teeth. The Illinois Department of Public Health recommends a fluoride level of 0.7 mg/L.

2 Nitrate in drinking water at levels above 10ppm is a health risk for infants of less than 6 months of age. High nitrate levels in drinking water can cause blue baby syndrome. Nitrate levels may rise quickly for short period of time because of rainfall or agricultural activity.

3 The MCL for Beta/photon emitters is written as 4 millirem/year (measure of rate of radiation absorbed by the body). Laboratory results are reported in pCi/L as we have on the table above. EPA considers 50 pCi/L as the level of concern for beta emitters.

Turbidity

Requirement	Limit (treatment technique)	Level Detected	Compliance Achieved	Likely Source of Contamination
Lowest Monthly % meeting limits	0.3 NTU	100%	Yes	Soil Runoff
Highest Single Measurement	1 NTU	0.19 NTU	Yes	Soil Runoff

4 Turbidity is a measure of the cloudiness of the water caused by suspended particles. We monitor it because it is a good indicator of the effectiveness of our filtration system, water quality, and disinfectants. The treatment technique requires that at least 95% of routine samples are less than or equal to 0.3 NTU, and no sample exceeds 1 NTU. We are reporting the percentage of all readings meeting the standard of 0.3 NTU, plus the single highest reading for the year

Other Substances of Interest

Substance	Year Sampled	Compliance Achieved	MCLG	Limit	Highest Result	Range Detected	Typical Source
Sodium (ppb)	2020	NA	NA	NA	2.6	22.3 - 25.7	Erosion from naturally occurring deposits. Used
							in water softeners regeneration.

Unregulated Contaminates

Parameter	Units	Year	Average Result	Range Detected	Typical Source
Total Haloactetic Acid	ppb	2019	18	9.4 - 38	By-product of drinking water disinfection
Total Haloacetic Acid - Br	ppb	2019	2.9	0.9 - 12	By-product of drinking water disinfection
Total Haloacetic UCMR4	ppb	2019	21	11 - 49	By-product of drinking water disinfection
Maganese	ppb	2019	7.3	2.5 - 17	Naturally occurring element in meta; largely used in aluminum alloy
					production. Essential dietary element

5 Unregulated contaminants are those for which EPA has not established drinking water standards. The purpose of unregulated contaminant monitoring is to assist EPA in determining the occurrence of unregulated contaminants in drinking water and whether future regulation is warranted. A maximum contaminant level (MCL) for these substances has not been established by either state or federal regulations, nor has mandatory health effects language

SML Water Commission Water Quality Results

Lead and Copper	Date Sampled	MCLG	Action Level (AL)	90th Percentile	# Sites Over AL	Units	Violation	Likely Source of Contamination
Copper	2019	1.3	1.3	0.202	0	ppm		Erosion of natural deposits; Leaching from wood preservatives; Corrosion of household plumbing systems.

Definitions: Action Level Goal (ALG): The level of a contaminant in drinking water below which there is no known or expected risk to health. ALGs allow for a margin of safety. Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Regulated Contaminates

Disinfectants and disinfection by- products	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
Chloramines	2020	3	2.3 - 3.5	MRDL = 4	MRDL = 4	ppm	No	Water additive used to control microbes
Haloacetic Acids (HAA5)	2020	40	22 - 57.3	NA	60	ppb	No	By-product of drinking water disinfection
Total Trihalomethanes (TTHM?	2020	51	22.3 - 74.4	NA	80	ppb	No	By-product of drinking water disinfection.

Radioactive Contaminates

Radioactive	Collection	Highest Level	Range of	MCLG	MCL	Units	Violation	Likely Source of Contamination
Contaminates	Date	Detected	Levels					
			Detected					
Combined	2015	1.4	1.4-1.4	0	5	pCi/l	No	Erosion of natural deposits
Radium								
Gross Alpha	2015	7.2	7.2-7.2	0	15	pCi/l	No	Erosion of natural deposits
excluding radon								
and Uranium								

Turbidity

Turbidity	Limit (treatment technique)	Level Detected	Violation	Likely Source of Contamination
Lowest Monthly % meeting limits	0.15 NTU	100%	No	Soil Runoff
Highest Single Measurement	1 NTU	.0.7 NTU	No	Soil Runoff

Inorganic Contaminates

Inorganic Contaminates	Collection Date	Highest Level Detected	Range of levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
Arsenic	2020	2	1.62 - 1.62	0	10	ppb	No	Erosion of natural deposits; Runoff from orchards; Runoff from glass and electronics production wastes.
Barium	2020	0.0444	0.0444 - 0.0444	2	2	ppm	No	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits.
Fluoride	2019	0.8	0.76 - 0.76	4	4.0	ppm	No	Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories
Nitrate	2020	1	1.25 – 1.256	10	10	ppm	No	Runoff from fertilizers use; leaching from septic tanks, sewer; erosion of natural deposits
Sodium	2020	12	11.7 – 11.7			ppm	No	Erosion from naturally occurring deposits. Used in water softener regeneration

Synthetic Organic Compounds

Synthetic	Collection	Highest Level	Range of	MCLG	MCL	Units	Violation	Likely Source of Contaminates
Organic	Date	Detected	Levels					
Contaminates			Detected					
including								
pesticides and								
Herbicides								
Atrazine	2020	1	0 - 0.73	3	3	ppb	No	Runoff from herbicides use on row crops

TRI-Township Water District

Lead and Copper	Date Sampled	MCLG	Action Level (AL)	90th Percentile	# Sites Over AL	Units	Violation	Likely Source of Contamination
Copper	2019	1.3	1.3	0.34	0	ppm	No	Erosion of natural deposits; Leaching from wood preservatives; Corrosion of household plumbing systems.
Lead	2019	0	15	1.1	0	ppb	No	Corrosion of household plumbing systems, Erosion of natural deposits

Definitions: Action Level Goal (ALG): The level of a contaminant in drinking water below which there is no known or expected risk to health. ALGs allow for a margin of safety. Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Disinfectants and	Collection	Highest	Range of	MCLG	MCL	Units	Violation	Likely Source of Contamination
disinfection by-	Date	Level	Levels					
products		Detected	Detected					
Chloramines	2020	2.9	1.6 - 4	MRDL = 4	MRDL = 4	ppm	No	Water additive used to control microbes
Haloacetic Acids (HAA5)	2020	50	6.34 - 112	NA	60	ppb	No	By-product of drinking water disinfection
Total Trihalomethanes (TTHM?	2020	68	27.5 – 114	NA	80	ppb	No	By-product of drinking water disinfection.

Highland IL Water Quality Results

Lead and Copper	Date Sampled	MCLG	Action Level (AL)	90th Percentile	# Sites Over AL	Units	Violation	Likely Source of Contamination
Copper	2020	1.3	1.3	0.322	0	ppm	No	Erosion of natural deposits; Leaching from wood preservatives; Corrosion of household plumbing systems.
Lead	2020	0	15	17	5	ppb	No	Corrosion of household plumbing systems, Erosion of natural deposits

Definitions: Action Level Goal (ALG): The level of a contaminant in drinking water below which there is no known or expected risk to health. ALGs allow for a margin of safety. Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Regulated Contaminates

Disinfectants and disinfection by- products	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
Chloramines	2020	2.6	2-3.2	MRDL = 4	MRDL = 4	ppm	No	Water additive used to control microbes
Haloacetic Acids (HAA5)	2020	41	1.22 - 53.7	NA	60	ppb	No	By-product of drinking water disinfection
Total Trihalomethanes (TTHM?	2020	37	17.2 - 50.1	NA	80	ppb	No	By-product of drinking water disinfection.

Radioactive Contaminates

Radioactive Contaminates	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
Combined Radium	2015	1.4	1.4-1.4	0	5	pCi/l	No	Erosion of natural deposits
Gross Alpha excluding radon and Uranium	2015	7.2	7.2-7.2	0	15	pCi/l	No	Erosion of natural deposits

Turbidity

Turbidity	Limit (treatment technique)	Level Detected	Violation	Likely Source of Contamination
Lowest Monthly % meeting limits	0.3 NTU	100%	No	Soil Runoff
Highest Single Measurement	1 NTU	0.25 NTU	No	Soil Runoff

Inorganic Contaminates

Inorganic	Collection	Highest Level	Range of levels	MCLG	MCL	Units	Violation	Likely Source of Contamination
Contaminates	Date	Detected	Detected					
Selenium	2020	2	2.2 -	2.2	50	ppb	No	Discharge from petroleum refineries; erosion from naturally occurring deposits
Barium	2020	0.05	0.05 -0.05	2	2	ppm	No	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits.
Fluoride	2020	0.9	0.867 – 0.867	4	4.0	ppm	No	Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories
Nitrate	2020	1	1.1 – 1.1	10	10	ppm	No	Runoff from fertilizers use; leaching from septic tanks, sewer; erosion of natural deposits
Sodium	2020	14	14 - 14			ppm	No	Erosion from naturally occurring deposits. Used in water softener regeneration

Violation Table

Violation Type	Violation	Violation End	Violation Explained
	Begin		
Water Quality parameter M/R	07/01/2020	12/31/2020	We failed to test our drinking water for the contaminate and period indicated, because of this failure,
			we cannot be sure of the quality of our drinking water during this period indicated.

*The Lead and Copper Rule protects public health by minimizing lead and copper levels in drinking water; primarily by reducing water corrosivity. Lead and copper enter drinking water mainly from corrosion of lead and copper containing plumbing materials.